
Just-Right
Consistency

Static analysis for minimal synchronisation

Marc Shapiro
Inria &

Sorbonne-Universités UPMC-LIP6

[Just-Right Consistency]

Cloud to the edge

2

Social, web, e-commerce: shared mutable data
Scalability ⇒ replication ⇒ consistency issues

[Just-Right Consistency]

Part I:
Consistency vs.

performance
Part I: Consistency vs. performance

• Geo-replicated cloud databases
• Consistency models
• Some partial solutions

Part II
• Just-right consistency

3 [Just-Right Consistency]

Serrano-SI P-Store-SER GMU-US Jessy2pc-NMSI

RC Walter-PSI SDUR-SER

Credit: Masoud Saeida Ardekani

Models matter

4

3×

4.5×

Te
rm

in
at

io
n

La
te

nc
y

of
Up

da
te

 T
ra

ns
ac

tio
ns

 (
m

s)

90% Read-only transactions; Disaster Tolerant

70% Read-only transactions; Disaster Tolerant

[Just-Right Consistency]

Strongest:
Strict Serialisability

5

T1

T1

R1
R2
R3

Invariant

client
T1

Invariant Invariant

T3

T3

T2

T2

[Just-Right Consistency]

Weakest:
Eventual consistency

6

Op1

R1
R2
R3

Op2

[Just-Right Consistency]

The problem(s) of
consistency

Same object:
• Safe: updates, state satisfy specification,

internal invariants
• Replicas converge to same state

Separate objects: maintain relations
• Multi-object invariants
• Different kinds ⟹ different mechanisms

ACID transactions mix all this; often too strong

7 [Just-Right Consistency]

Seq. consistency
examples

Bank account
• debit(amt), credit(amt), accrueInterest(amt)
• Invariant: “balance ≥ 0”
• { amt ≤ balance ∧ Inv } debit(amt) { Inv }

File system
• mkdir, rmdir, create, write, rm, ls, etc.
• Invariant: Tree
• { Tree ∧ ¬ x/…/y } mv(x,y) { Tree }

8

[Just-Right Consistency]

CAP
Sequential Consistency: total order of

operations ⟹ replicas identical
• Consensus: “Who’s next?”
• Requires communication

CAP Theorem: “When network can Partition,
• either sequential Consistency,
• or Availability;
• can’t have both!”

Availability related to performance
• Parallelise
• More implementation choices

9 [Just-Right Consistency]

Consistency issues
under EC

Updates delivered in different orders: not
identical, do not converge

Lost updates (LWW: by design)
No causality: updates received out of order
No transactions: inter-object invariants violated
Compensating at application level: very

challenging
Solution: Spanner?

10

[Just-Right Consistency]

Operation

u: state ⤻ (retval, (state ⤻ state))
Prepare (@origin) u?; deliver u!
Read one, write all (ROWA)
Deferred-update replication (DUR)

11

origin
replica

u!

u!

u?

client u

replica

uPRE

u!
replica

v? v!

[Just-Right Consistency]

Concurrency

Concurrent, Multi-master
Strong: total order, identical state
Weak: concurrent, interleaving, no global state

12

Convergence?
Safety?

u!

u!

u?

u

origin
replica

client

other
replica

v?

v!

v!

v! u!

[Just-Right Consistency]

Anomalies of concurrent
updates

Bank:
• σinit = 100€
• Alice: credit(20) = { σ ≔ 120 }
• Bob: debit (60) = { σ ≔ 40 }
• σ = ???

File system:
• σinit = “/“
• Alice: mkdir (“/foo”); mkdir (“/foo/bar”)
• Bob: receives mkdir (“/foo/bar”)
• σ = ???

13 [Just-Right Consistency]

access (Bob, photo) ⟹ ACL (Bob, photo)
v observed effects of u
 ⟹ v should be delivered after u
Available: doesn’t slow down sender

Not causal

14

u

u v

v

v uBob

Alice @home

Alice @phone

Don’t
show photos to

Bob
post photo

Bob sees photo

[Just-Right Consistency]

Causal-order delivery(1) Causal consistency

15

u

u v

v

vuBob

Alice @home

Alice @phone

access (Bob, photo) ⟹ ACL (Bob, photo)
v observed effects of u
 ⟹ v should be delivered after u
Available: doesn’t slow down sender

[Just-Right Consistency]

(2) Conflict-free
replicated data types

Data type
• Encapsulates issues

Replicated
• At multiple nodes

Available
• Update my replica without coordination
• Convergence guaranteed (formal properties)
• Decentralised, peer-to-peer

16

[Just-Right Consistency]

Commute ⟹ converge

Bank account:
• credit(amt)! = { local_balance += amt }
• debit(amt)! = { local_balance –= amt }
• interest()! =

{ local_balance += origin_balance*.05 }
File system:

• write(f)! = { local_f ⊔ f }

17 [Just-Right Consistency]

CRDT design concept
Backward-compatible with sequential datatype
Commute ⟹ concurrent is same

• add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)
Otherwise, concurrency semantics

• Example: add(e) || rm (e)
• Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

• Merge, don’t lose updates
• Result doesn't depend on order received
• Stable preconditions

18

[Just-Right Consistency]

CRDT design concept
Backward-compatible with sequential datatype
Commute ⟹ concurrent is same

• add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)
Otherwise, concurrency semantics

• Example: add(e) || rm (e)
• Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

• Merge, don’t lose updates
• Result doesn't depend on order received
• Stable preconditions

19 [Just-Right Consistency]

CRDT design concept
Backward-compatible with sequential datatype
Commute ⟹ concurrent is same

• add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f)
Otherwise, concurrency semantics

• Example: add(e) || rm (e)
• Deterministic, similar to sequential
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e)

• Merge, don’t lose updates
• Result doesn't depend on order received
• Stable preconditions

20

[Just-Right Consistency]

CRDT concept

Innovation and research: systems, algorithms,
databases

Consistency of shared mutable data

21 [CRDTs in practice] 22

RA

RB

RC

{1}

(1, {a}, {})

add(1)

{1}

(1, {c}, {})

add(1)

{}

(1, {c}, {c})

remove(1)

{1}

{1}

{1}

(1, {a, c}, {c})

(1, {a, c}, {c})

(1, {a, c}, {c})

Add-Wins Set CRDT

[Just-Right Consistency]

CRDT types
Converge concurrent updates

Encapsulate replication & resolution
Re-usable data types

Correct by construction

23

Register
• Last-Writer Wins
• Multi-Value

Set
• Grow-Only
• 2P
• Observed-Remove

Map

Counter
• Unlimited
• Restricted ≥0

Graph
• Directed
• Monotonic DAG
• Edit graph

Sequence
[Just-Right Consistency]

(3) Bounded Counter
CRDT

Replicated Counter: inc(), dec()
Invariant: bounded “x≥0”
Credit per replica: ∑ crediti ≤ bound
Asynchronous:

• { crediti ≥ 1 } dec!() ={ ctr –= 1; crediti –= 1 }
• transfer (crediti, crediti)

Synchronized
• acquire(crediti)

24

[Just-Right Consistency] 25 [Just-Right Consistency]

SwiftCloud edge +cloud

26

Update, commit shared store locally
Availability + consistency: DC switch
Causal + transactional
3000+ client replicas

DC

DC

DC

C

C C

C

Transmit

partial
database

app
Process
request 
& store
update Transmit

Transmit

fail-over

full
database

Transmit

[Just-Right Consistency]

Antidote
SyncFree EU project
High performance, sharded, transactional, causal
Aims to scale to 100s of DCs

• Very modular
• Partial replication
• Small but safe metadata (vector clock)

In DC: strong consistency, physical clocks (Clock-SI)
Industrial apps: Virtual Wallet, SocialApp,

configuration management, FMK

27 [Just-Right Consistency]

(4) NMSI: strong, parallel

28

T1

T2

x

y

x?

Wait-Free
Queries

y?
T2

x?

Forward
Freshness

Mini. Commit.
Synch + Genuine

Partial Repl.

T3
y? x?

Non-
Monotonic
Snapshot

Read from causal snapshot
Scalability properties:

• Wait-Free Queries
• Forward Freshness
• Mini. Commitment Synchronisation
• Genuine Partial Replication

[Just-Right Consistency]

Three dimensions

29

Eventual Consistency

Snapshot
Isolation

HAT

Gen1 /
Total

Order

EQ /

Composition

PO / Visibility
Causal

Linearisability

Serialisability
Strict

Serialisability
CAP

[Just-Right Consistency]

Part II:
Just-right

consistency
Part I: Consistency vs. performance

• Geo-replicated cloud databases
• Consistency models
• Some partial solutions

Part II
• Just-right consistency

30

[Just-Right Consistency]

Application invariants

South ⨄ Boat ⨄ North = { sheep, dog, wolf }
carryNorth(S) ⟹	1 ≤ |S| ≤ 2
carrySouth(S) ⟹	1 ≤ |S| ≤ 2
∀S ∈ {South, Boat, North} :
 sheep ∈ S ∧ wolf ∈ S ⟹	dog ∈ S

Hard to tease invariants out

• Silent invariants

31 [Just-Right Consistency]

Seq. consistency
examples

Bank account
• debit(amt), credit(amt), accrueInterest(amt)
• Invariant: “balance ≥ 0”
• { amt ≤ balance ∧ Inv } debit(amt) { Inv }

File system
• mkdir, rmdir, create, write, rm, ls, etc.
• Invariant: Tree
• { Tree ∧ ¬ x/…/y } mv(x,y) { Tree }

32

[Just-Right Consistency]

Just-Right Consistency
CRDT geo-replicated database

• Lots of internal parallelism
• Transactional, causal consistency by default

Specification of application updates, invariant
• CISE: do all state transitions preserve invariant?
• If not, fix: adjust
‣ either specification
‣ or synchronisation

• Repeat until safe
App / synch co-design: Minimal synchronisation

33 [Just-Right Consistency] 34

Asynchronous, replicated updates
• State σ
• Invariant I
• Prepare: read one, generate effector
• Update all, deferred: deliver effector

Converge? Invariant OK?

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?100 € ≥ 0

100 € ≥ 0

accrue 5% +5 €

+5 €

debit(100)

5 € ≥ 0

5 € ≥ 0
–100

–100

[Just-Right Consistency] 35

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?

[Just-Right Consistency]

Simple example: bank
account

Operations: credit(amount), debit(amount)
Invariant: balance ≥ 0

• Start with weak specification
• Rule 1 ⟶ strengthen precondition for debit
• Rule 2: OK
• Rule 3 ⟶ debit || debit unsafe, fixed with

concurrency control

36

[Just-Right Consistency] 37

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

u!

u!

u?
I

I
uPRE

uPRE

•

•

σ: I

σ: I

[Just-Right Consistency] 38

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

u!

u!

u?

v!

v!σ: I

σ: I

[Just-Right Consistency] 39

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

u!

u!

u?

uPRE

uPRE

?

I
•

v!

•

•σ: I

σ: I

[Just-Right Consistency] 40

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

balance = 1

balance − 1

debit(1)

debitPRE

{1 ≤ 1}

debitPRE

{ 1 ≤ 0 }
?

balance = 1
balance − 1balance − 1

debit(1)

Fix:
concurrency

control

balance = –1

•

•

[Just-Right Consistency]

Advanced example:
file system

Operations: mkdir, rmdir, mv, update, etc.
Invariant: Tree

• Rule 1 ⟶ precondition on mv
• “May not move node under self”
• Rule 2 ⟶ Use CRDTs for update || update
• Rule 3 ⟶ mv || mv precondition unstable

41 [Just-Right Consistency] 42

CISE Rules
1: Sequential correctness

• Any single operation maintains the invariant
2: Convergence

• Concurrent effectors commute
3: Precondition Stability

• Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

Fix:
concurrency

control

root

BA

root

BA

root

BA

root

BA

•

•

You can
have your cake
and eat it too

[Just-Right Consistency]

Applying the logic

Only O(n2): no need to consider all possible
interleavings

We use a tool
• You can apply the same logic manually

43 [Just-Right Consistency]

Conclusion & future work
3-D decomposition

• Deconstruct hierarchy
• Classes of invariants / primitive mechanisms

CISE tool
• Synthesize synchronisation

CISE assumes causal, transactional
• Constructive: use insights for designing

apps, building mechanisms
• Deconstruct / weaker / chopping transactions
• Selective application of causality

44

