Cloud to the edge

Just-Right
Consistency

Static analysis for minimal synchronisation

Marc Shapiro

Inria &
Sorbonne-Universités UPMC-LIP6

L Social, web, e-commerce: shared mutable data
Upm informatics 47 mathematics Scalability = replication = consistency issues
1@A1 SORBONNE UNIVERSITES ﬂ /b

Part | Models matter
Consistency vs. o

performance I

Sg 100 | S e
2 50 | T
— 0 1 1 1 1 1 1
. 2 g 0 5000 10000 15000 20000 25000 30000
Part I: Consistency vs. performance £ B o

'2% ead-only transa

* Geo-replicated cloud databases 530 Y/ '

e Consistency models —

e Some partial solutions ﬁ

Credit: Masoud Saeida Ardekani

Strongest: Weakest:
Strict Serialisability Eventual consistency

T1
client -4)
. 2
T p—o—o—f 3 p—0——0— Op1—@—0—
R1 A - “— $ RT A te At
v v v ¥ gy
T1 T T3
Invariant Invariant Invariant
Same Object: Baﬂk account
« Safe: updates, state satisfy specification, * debit(amt), credit(amt), accruelnterest(amt)
internal invariants * Invariant: “balance > 0”
* Replicas converge to same state e { amt < balance A Inv} debit(amt) { Inv }
Separate objects: maintain relations File system
» Multi-object invariants e mkdir, rmdir, create, write, rm, Is, etc.
 Different kinds = different mechanisms e Invariant: Tree

ACID transactions mix all this; often too strong o {Tree A = X/.../y } mv(x,y){ Tree }

CAP

Sequential Consistency: total order of

operations = replicas identical
e Consensus: “Who’s next?”
e Requires communication

CAP Theorem: “When network can Partition,

* either sequential Consistency,
e or Availability;
e can't have both!”

Availability related to performance
» Parallelise
* More implementation choices

Operation

client — 4

origin *a m ui
replica L4
ur

replica (]
Y \ us

u: state - (retval, (state -~ state))

Prepare (@origin) uz; deliver ur

Consistency issues

under EC

Updates delivered in different orders: not
identical, do not converge

Lost updates (LWW: by design)
No causality: updates received out of order
No transactions: inter-object invariants violated

Compensating at application level: very
challenging

Solution: Spanner?

Concurrency

/\ Convergence?
ur Vi Safety?

O) o—ij

U\< I N

/. . \ i

ur
o—o |
VoAV

Concurrent, Multi-master
Strong: total order, identical state
Weak: concurrent, interleaving, no global state

Anomalies of concurrent

updates

Bank:
* Oinit = 100€
* Alice: credit(20) = { o =120 }
» Bob: debit (60)={ 0o =40}
* 0="777

File system:
* Ot = “/*
e Alice: mkdir (“/foo”); mkdir (“/foo/bar”)

* Bob: receives mkdir (“/foo/bar”)
e 0="777

(1) Causal consistency

access (Bob, photo) = ACL (Bob, photo)
v observed effects of u

= v should be delivered after u
Available: doesn’t slow down sender

Not causal

Don’t
show photos to post photo
Bob
Alice @home ---W:------mmn- 5 ° -------------- >

Bob sees photo

access (Bob, photo) = ACL (Bob, photo)

(2) Conflict-free
replicated data types

Data type
* Encapsulates issues
Replicated
* At multiple nodes
Available
» Update my replica without coordination
e Convergence guaranteed (formal properties)
e Decentralised, peer-to-peer

Commute = converge

Bank account:
* credit(amt); = { local_balance += amt }
» debit(amt); = { local_balance —= amt }

* interest(): =
{ local_balance += origin_balance*.05 }

File system:
o write(f)r = { local_fu f}

CRDT design concept

Backward-compatible with sequential datatype
Commute = concurrent is same
« add(e); rm(f) = rm(f); add(e) ¢ add(e) || rm (f)

CRDT design concept

Backward-compatible with sequential datatype
Commute = concurrent is same
e add(e); rm(f) = rm(f); add(e)

CRDT design concept

Backward-compatible with sequential datatype
Commute = concurrent is same

 add(e); rm(f) = rm(f); add(e) ¢ add(e) || rm (f)
Otherwise, concurrency semantics

» Example: add(e) || rm (e)

* Deterministic, similar to sequential

» ~rm(e);add(e)or = add(e); rm(e)
* Merge, don't lose updates
* Result doesn't depend on order received

CRDT concept Add-Wins Set CRDT

0k < 4 > 0
) (1 (2. . ()
Ry v /, s - /’I < TTeay, » (1}
I (. .9 (9)
& (remoee 0"
[0} 0 A > 0
{0 (1, {c}. () ((NERSR ()]

[CRDTs in practice] 22

(3) Bounded Counter
CRDT types CRDT

Encapsulate replication & resolution Replicated Counter: inc(), dec()
Re-usable data types Invariant: bounded “x>0"

Correct by construction _ ,]
Credit per replica: Y crediti < bound

Register Counter Asynchronous:

 Last-Writer Wins ¢ Unlimited . ” B Iy _

o Muli-Value e Restricted >0 { crediti> 1} (.jeCl() _.{ ctr—=1; crediti—= 1}
Set Graph * transfer (credit;, credit)

e Grow-Only e Directed Synchronized

o OP e Monotonic DAG e acauire(credit

* Observed-Remove e Edit graph quire)
Map Sequence

‘“.’ SZ/itITY ﬂ,g

e

G A ME S

LEAGUES sriak
LEGEN DS

TOomTOM

TRIFORK. Tapjo

... Ahink software

Z/\

akka FROUECT

Antidote

SyncFree EU project
High performance, sharded, transactional, causal

Aims to scale to 100s of DCs
e Very modular
* Partial replication
e Small but safe metadata (vector clock)

In DC: strong consistency, physical clocks (Clock-Sl)

Industrial apps: Virtual Wallet, SocialApp,
configuration management, FMK

full
database

Process
rocese Y —
& store Trans™
update 7
@ - k;‘,\ — <
&L 2

Update, commit shared store locally
Availability + consistency: DC switch
Causal + transactional

3000+ client replicas

(4) NMSI: strong, parallel

Non-
Monotonic
Snapshot .~

—~_SSS

Wait-Free
Queries

Mini. Commit.
Synch + Genuine
Partial Repl.

Read from causal snapshot

Scalability properties:
Wait-Free Queries
Forward Freshness
Mini. Commitment Synchronisation
Genuine Partial Replication

Three dimensions

Gen1/
A
TOt?.-!-- Linearisability
~_.Order
Strict
Serialisability - Serialisability
CAP
Snapshot
Isolation
PO / Visibility
Cauéal
al
02\\‘\0\"
HAT

0
co

Application invariants

South W Boat W North = { sheep, dog, wolf }
carryNorth(S) = 1 < |S| <2
carrySouth(S) = 1< |S| <2
vS e {South, Boat, North} : @\\

sheepe Sawolfe S= doge S| =~ —

Hard to tease invariants out
e Silent invariants

Part |l
Just-right
consistency

Part Il
» Just-right consistency

Seq. consistency
examples

Bank account

* debit(amt), credit(amt), accruelnterest(amt)

* |nvariant: “balance > 0”

» { amt < balance A Inv} debit(amt){ Inv }
File system

e mkdir, rmdir, create, write, rm, Is, etc.

* |nvariant: Tree

e {Tree A = X/.../y } mv(x,y){ Tree }

Just-Right Consistency

CRDT geo-replicated database
* Lots of internal parallelism
* Transactional, causal consistency by default

Specification of application updates, invariant

» CISE: do all state transitions preserve invariant?

* |f not, fix: adjust
» either specification
» Or synchronisation

* Repeat until safe
App / synch co-design: Minimal synchronisation

1?
o:l '5/_\‘3' ﬁ |—>
/1?
° ° i
vi f u
@)

CISE Rules

1: Sequential correctness
* Any single operation maintains the invariant

2: Convergence
* Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

accrue 5% +5€ -100 |2

100 €20 w o ow
o:l 0 teo— o
1?
v f. ; |
O

Asynchronous, replicated updates
» State o
* Invariant /
* Prepare: read one, generate effector
* Update all, deferred: deliver effector
Converge? Invariant OK?

5€=0

Simple example: bank

account

Operations: credit(amount), debit(amount)
Invariant: balance > 0
o Start with weak specification
* Rule 1 — strengthen precondition for debit
* Rule 2: OK

 Rule 3 — debit || debit unsafe, fixed with
concurrency control

CISE Rules

1. Sequential correctness
* Any single operation maintains the invariant

2: Convergence
* Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

[Just-Right Consistency] 37

o:l

o:l

CISE Rules

1: Sequential correctness
* Any single operation maintains the invariant

2. Convergence
e Concurrent effectors commute

3: Precondition Stability
* Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

[Just-Right Consistency] 39

o:l L AL -

o:l o— o I_>

CISE Rules

1: Sequential correctness
* Any single operation maintains the invariant

2. Convergence
* Concurrent effectors commute

3: Precondition Stability
» Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

[Just-Right Consistency] 38

balance —= 1

debitpre
{1=<1}
¥

debit(1)

balance = -1

balance = 1

balance —= 1 balance —=

debit(1) O

debitpre
{1=<0}
?

CISE Rules

1: Sequential correctness
* Any single operation maintains the invarian

. Fix:
2: Convergence concurrency
e Concurrent effectors commute control

3: Precondition Stability
* Every precondition is stable under every
concurrent operation

If satisfied: invariant is guaranteed

[Just-Right Consistency] 40

Advanced example: S > -

file system - -

\ n
[] i ®
N

mv ‘k\\?BG../A}//)
You can
have your cake
and eatittoo |
* Rule 3 — mv || mv precondition unstable 3: Precondition Stability v

» Every precondition is stable under .very
concurrent operation

Applying the logic Conclusion & future work

3-D decomposition
e Deconstruct hierarchy
» Classes of invariants / primitive mechanisms
Only O(n?). no need to consider all possible CISE tool

interleavings « Synthesize synchronisation

We use a tool CISE assumes causal, transactional
* You can apply the same logic manually « Constructive: use insights for designing
apps, building mechanisms
* Deconstruct / weaker / chopping transactions
» Selective application of causality

