
Just-Right 
Consistency

Static analysis for minimal synchronisation

Marc Shapiro 
Inria & 

Sorbonne-Universités UPMC-LIP6

[Just-Right Consistency]

Cloud to the edge

2

Social, web, e-commerce: shared mutable data 
Scalability ⇒ replication ⇒ consistency issues
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Part I: 
Consistency vs. 

performance
Part I: Consistency vs. performance 

• Geo-replicated cloud databases 
• Consistency models 
• Some partial solutions 

Part II 
• Just-right consistency
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Strongest: 
Strict Serialisability
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Weakest: 
Eventual consistency
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The problem(s) of 
consistency

Same object: 
• Safe: updates, state satisfy specification, 

internal invariants 
• Replicas converge to same state 

Separate objects: maintain relations 
• Multi-object invariants 
• Different kinds ⟹ different mechanisms 

ACID transactions mix all this; often too strong
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Seq. consistency 
examples

Bank account 
• debit(amt), credit(amt), accrueInterest(amt) 
• Invariant: “balance ≥ 0” 
• { amt ≤ balance ∧ Inv } debit(amt) { Inv } 

File system 
• mkdir, rmdir, create, write, rm, ls, etc. 
• Invariant: Tree 
• { Tree ∧ ¬ x/…/y } mv(x,y) { Tree }

8



[Just-Right Consistency]

CAP
Sequential Consistency: total order of 

operations ⟹ replicas identical 
• Consensus: “Who’s next?”  
• Requires communication 

CAP Theorem: “When network can Partition, 
• either sequential Consistency, 
• or Availability; 
• can’t have both!” 

Availability related to performance 
• Parallelise 
• More implementation choices
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Consistency issues 
under EC

Updates delivered in different orders: not 
identical, do not converge 

Lost updates (LWW: by design) 
No causality: updates received out of order 
No transactions: inter-object invariants violated 
Compensating at application level: very 

challenging 
Solution: Spanner?
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Operation

u: state ⤻ (retval, (state ⤻ state)) 
Prepare (@origin) u?; deliver u! 
Read one, write all (ROWA) 
Deferred-update replication (DUR)
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Concurrency

Concurrent, Multi-master 
Strong: total order, identical state 
Weak: concurrent, interleaving, no global state
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Anomalies of concurrent 
updates

Bank: 
• σinit = 100€ 
• Alice: credit(20) = { σ ≔ 120 } 
• Bob: debit (60) = { σ ≔ 40 } 
• σ = ??? 

File system: 
• σinit = “/“ 
• Alice: mkdir (“/foo”); mkdir (“/foo/bar”) 
• Bob: receives mkdir (“/foo/bar”) 
• σ = ???
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access (Bob, photo) ⟹ ACL (Bob, photo) 
v observed effects of u 
   ⟹ v should be delivered after u 
Available: doesn’t slow down sender

Not causal
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Causal-order delivery(1) Causal consistency
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(2) Conflict-free 
replicated data types

Data type 
• Encapsulates issues  

Replicated 
• At multiple nodes 

Available 
• Update my replica without coordination 
• Convergence guaranteed (formal properties) 
• Decentralised, peer-to-peer

16



[Just-Right Consistency]

Commute ⟹ converge

Bank account: 
• credit(amt)! = { local_balance += amt } 
• debit(amt)! = { local_balance –= amt } 
• interest()! =  

{ local_balance += origin_balance*.05 } 
File system: 

• write(f)! = { local_f ⊔ f }
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CRDT design concept
Backward-compatible with sequential datatype 
Commute ⟹ concurrent is same 

• add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f) 
Otherwise, concurrency semantics 

• Example: add(e) || rm (e) 
• Deterministic, similar to sequential  
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e) 

• Merge, don’t lose updates 
• Result doesn't depend on order received 
• Stable preconditions
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CRDT design concept
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Commute ⟹ concurrent is same 

• add(e); rm(f) = rm(f); add(e) ≜ add(e) || rm (f) 
Otherwise, concurrency semantics 

• Example: add(e) || rm (e) 
• Deterministic, similar to sequential  
‣ ≈ rm(e);add(e) or ≈ add(e); rm(e) 

• Merge, don’t lose updates 
• Result doesn't depend on order received 
• Stable preconditions

20



[Just-Right Consistency]

CRDT concept

Innovation and research: systems, algorithms, 
databases 

Consistency of shared mutable data
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CRDT types
Converge concurrent updates 

Encapsulate replication & resolution 
Re-usable data types 

Correct by construction
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Register 
• Last-Writer Wins 
• Multi-Value 

Set 
• Grow-Only 
• 2P 
• Observed-Remove 

Map

Counter 
• Unlimited 
• Restricted ≥0 

Graph 
• Directed 
• Monotonic DAG 
• Edit graph 

Sequence
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(3) Bounded Counter 
CRDT

Replicated Counter: inc(), dec() 
Invariant: bounded “x≥0” 
Credit per replica: ∑ crediti ≤ bound 
Asynchronous: 

• { crediti ≥ 1 } dec!() ={ ctr –= 1; crediti –= 1 } 
• transfer (crediti, crediti) 

Synchronized 
• acquire(crediti)
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SwiftCloud edge +cloud
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Update, commit shared store locally 
Availability + consistency: DC switch 
Causal + transactional 
3000+ client replicas
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Antidote
SyncFree EU project 
High performance, sharded, transactional, causal 
Aims to scale to 100s of DCs 

• Very modular 
• Partial replication 
• Small but safe metadata (vector clock) 

In DC: strong consistency, physical clocks (Clock-SI) 
Industrial apps: Virtual Wallet, SocialApp, 

configuration management, FMK
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(4) NMSI: strong, parallel
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Three dimensions
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Eventual Consistency
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Part II: 
Just-right 

consistency
Part I: Consistency vs. performance 

• Geo-replicated cloud databases 
• Consistency models 
• Some partial solutions 

Part II 
• Just-right consistency
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Application invariants

South ⨄ Boat ⨄ North = { sheep, dog, wolf } 
carryNorth(S) ⟹	1 ≤ |S| ≤ 2 
carrySouth(S) ⟹	1 ≤ |S| ≤ 2 
∀S ∈ {South, Boat, North} :  
   sheep ∈ S ∧ wolf ∈ S ⟹	dog ∈ S 
  
Hard to tease invariants out 

• Silent invariants
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Seq. consistency 
examples

Bank account 
• debit(amt), credit(amt), accrueInterest(amt) 
• Invariant: “balance ≥ 0” 
• { amt ≤ balance ∧ Inv } debit(amt) { Inv } 

File system 
• mkdir, rmdir, create, write, rm, ls, etc. 
• Invariant: Tree 
• { Tree ∧ ¬ x/…/y } mv(x,y) { Tree }
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Just-Right Consistency
CRDT geo-replicated database 

• Lots of internal parallelism 
• Transactional, causal consistency by default 

Specification of application updates, invariant 
• CISE: do all state transitions preserve invariant? 
• If not, fix: adjust 
‣ either specification 
‣ or synchronisation 

• Repeat until safe 
App / synch co-design: Minimal synchronisation
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Asynchronous, replicated updates 
• State σ 
• Invariant I 
• Prepare: read one, generate effector 
• Update all, deferred: deliver effector 

Converge?  Invariant OK?

σ: I
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100 € ≥ 0
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–100
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CISE Rules 
1: Sequential correctness 

• Any single operation maintains the invariant 
2: Convergence 

• Concurrent effectors commute 
3: Precondition Stability 

• Every precondition is stable under every 
concurrent operation 

If satisfied: invariant is guaranteed

σ: I
u!

u!

u?

σ: I v!

v!

I ?

I ?

[Just-Right Consistency]

Simple example: bank 
account

Operations: credit(amount), debit(amount) 
Invariant: balance ≥ 0 

• Start with weak specification 
• Rule 1 ⟶ strengthen precondition for debit  
• Rule 2: OK 
• Rule 3 ⟶ debit || debit unsafe, fixed with 

concurrency control
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CISE Rules 
1: Sequential correctness 

• Any single operation maintains the invariant 
2: Convergence 

• Concurrent effectors commute 
3: Precondition Stability 

• Every precondition is stable under every 
concurrent operation 

If satisfied: invariant is guaranteed
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CISE Rules 
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CISE Rules 
1: Sequential correctness 

• Any single operation maintains the invariant 
2: Convergence 

• Concurrent effectors commute 
3: Precondition Stability 

• Every precondition is stable under every 
concurrent operation 

If satisfied: invariant is guaranteed

balance = 1

balance −  1

debit(1)

debitPRE

{1 ≤ 1}

debitPRE

{ 1 ≤ 0 }
?

balance = 1
balance −  1balance −  1

debit(1)

Fix: 
concurrency 

control

balance = –1

•

•
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Advanced example: 
file system

Operations: mkdir, rmdir, mv, update, etc. 
Invariant: Tree 

• Rule 1 ⟶ precondition on mv 
• “May not move node under self”  
• Rule 2 ⟶ Use CRDTs for update || update 
• Rule 3 ⟶ mv || mv precondition unstable
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CISE Rules 
1: Sequential correctness 

• Any single operation maintains the invariant 
2: Convergence 

• Concurrent effectors commute 
3: Precondition Stability 

• Every precondition is stable under every 
concurrent operation 

If satisfied: invariant is guaranteed

mv /B, /AmvPRE

{¬B/.../A}

mvPRE

{¬B/.../A}
?

mv /A, /B

Fix: 
concurrency 

control
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You can 
have your cake 
and eat it too
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Applying the logic

Only O(n2): no need to consider all possible 
interleavings 

We use a tool 
• You can apply the same logic manually
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Conclusion & future work
3-D decomposition 

• Deconstruct hierarchy 
• Classes of invariants / primitive mechanisms 

CISE tool 
• Synthesize synchronisation 

CISE assumes causal, transactional 
• Constructive: use insights for designing 

apps, building mechanisms 
• Deconstruct / weaker / chopping transactions 
• Selective application of causality
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